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1 INTRODUCTION

1 Introduction

1.1 Broad background

Networks have diffused into everyday life through now-familiar realities like
the Internet, social networks, blockchains and more. Commercial- as well as
public institutions form digital bridges between each other to exchange key
data and thus most data transactions could, at least in theory, be viewed
and analysed as networks or graphs, in Mathematics’ terms.

The net in ”network” hints at the visual representation of such system
to capture the idea of its members and their interconnectedness. As a re-
sult, there is a critical need for all sorts of insights from network analysis,
both common and sophisticated. But it’s been difficult to research big, of-
ten cross-border, systems due to their complexity and lack of a common
standard.

Luckily for us, some such systems have consolidated under a single in-
frastructure where activity- and relational data could be collected and hence
also analysed. Good examples include social networks like Facebook where
network analysis methods have been tried and tested [1], and what I aim to
cover in this project are national data exchange networks like X-Road. The
X-Road protocol is an ecosystem solution that provides unified and secure
data exchange between companies, government bodies, not-for-profits and
other organisations [18]. It has been applied in multiple countries on a na-
tional level and thus can be considered one of the first more comprehensive
overviews of a data economy. Therefore in this project, I’m exploring how
to measure a network that represents the data exchange infrastructure of a
whole country.

1.2 Motivation

In fact, the X-Road protocol has been applied on a national level in Estonia,
Finland, Iceland and the Faroe Islands [16] therefore potentially affecting
over 7 million people (the sum of the populations) and in reality even more
as foreigners also reap benefits of a connected data economy.

Estonia, with a population of 1.3 million, has been relying on their in-
stance of X-Road, called X-tee, since 2001 [4] which means these data ex-
change processes have become an integral part of most Estonians’ day-to-day
lives. Examples include instantaneous checking of a person’s registered liv-
ing address on bus ticket validation, seamless flowing of all personal health
data between private and public health institutions, voting online, and au-
tomatic generation of annual tax forms based on income data, to name a
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1.3 Research objective 1 INTRODUCTION

few use cases.
Estonia’s X-tee has been collecting monitoring (activity) data since 2016

[13] and is automatically releasing it as open data. Although the releases
have been slightly reformatted to fit data protection regulations by censoring
personally identifiable information and delaying data flow, this data still
enables a whole country to be modelled, to some extent, as a big network of
different organisations interacting with each other.

Understanding the patterns of these interactions and how these organ-
isation are split into industries or sectors in this so-called data economy
can help us identify the relative importance and relevance of these organi-
sations and sectors. This in turn could eventually be applied to a real-time
system to spot anomalies as quickly as they arise, either in a cyber threat
perspective or economics perspective.

1.3 Research objective

The Estonian X-tee data offers a great starting dataset to build analysis
methodology and metrics that could later be applied to other similar in-
frastructures (e.g. the Finnish instance of X-Road). Therefore, this project
aims to first describe the graph structure with some key metrics, and detect
possible communities and their characteristics.

The objective is to represent the plain transaction data as a network,
analyse it’s distribution (hence deduce applicable models), connectedness,
most active members, implied communities, and how some of these measures
change in time. The aim for the results is to add value to the already existing
infrastructure insights [6]. The hypothesis is that network science and graph
analysis methods could be an insightful perspective to help improve the
decision making and monitoring of the Estonian X-Road network but could
also be applied to other data exchange networks already serving millions of
people.

In addition to the other promising benefits mentioned previously, these
analysis metrics could increase the confidence of new administrations of
countries or municipalities to adopt such secure data exchange layers. This
decreases bureaucracy, paperwork, and increases the overall happiness of
citizens which could soon add up to tens of millions more people on similar
data interoperability infrastructures [17].
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2 Subject-specific Background

2.1 General background

When dealing with networks, we often come across two sets of terminology.
In Network Science, we have networks that are comprised of nodes and
related pairs of nodes, called links. And in Graph Theory, we have graphs
that are comprised of vertices and related pairs of vertices, called edges. The
subtle difference in those two terminologies is the field of application. When
talking about real world systems the {network, node, link} terminology is
most appropriate and the {graph, vertex, edge} terminology is used when
discussing the mathematical representation of these networks [2]. However,
as in many scientific papers, I will use each equivalent term interchangeably.

Most of the analysis is done using R programming language. The un-
derlying X-Road data is gathered programmatically through an application
programming interface (API here-on out) hosted by the Information Sys-
tem Authority of Republic of Estonia. In this case, the API is a public
URL where parameters like date, time, desired columns of the data, and
any constraints on values can be defined [5]. Once parameters are defined,
the URL is executed and the response is a human- and machine-readable
JSON (JavaScript Object Notation) file.

R enables installing custom packages to provide niche functionality, like
API requests, and I’m using the igraph package to create network objects.
Network objects are data types that can be manipulated, analysed, and
plotted using Graph Theory and Network Science practices.

2.2 Graph Theory Background

A graph (G) is an object consisting of two sets called its vertex set (V ) and
its edge set (E), thus a graph is notated G(V,E) [10].

Graphs can have multiple edges and loops. A loop is an edge that joins
a vertex to itself. A multiple edge means there’s two or more edges that
connect the same nodes (and in the same direction, for directed graphs). If
a graph doesn’t have loops or multiple edges then it’s called a simple graph,
otherwise it’s considered a multigraph. We will aggregate our data such that
there are no multiple edges, but there are loops as the same X-Road member
can have multiple sub-services that request data from each-other. So we still
consider our graph technically a multigraph.

A directed graph is a graph which edges have orientations. The rigorous
definition of a graph in the case of a directed multigraph (also called a
quiver) must be expanded. A quiver is an ordered triple G(V,E, ϕ) where:
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2.3 Network Science Background2 SUBJECT-SPECIFIC BACKGROUND

• V is the set of vertices/nodes.

• E is the set of edges/links.

• ϕ : E −→ {(x, y) | (x, y) ∈ V 2} is an incidence function mapping
every edge to an ordered pair of vertices.

In practice, the incidence function is provided inside the R function that
creates the network object and we just need to provide the set of nodes,
and set of links. Since set is a specific mathematical term, I will be using
alternatives such as list, array, table, or similar when speaking about the
more practical applications of the node and link sets.

2.3 Network Science Background

2.3.1 Total number of nodes and links

A basic graph metric we cover is the number of nodes (N) of a graph. It
represents the total number of unique members, and also called the size of
the network. To distinguish the nodes, they’ve been labelled by their official
unique member codes (each of which can be mapped to a human-readable
member name).

Secondly, number of links (L) represents the total number of distinct
interactions between the nodes. Since there’s no multiple links (connecting
same nodes in the same direction) as mentioned in Section 2.2, then links
don’t have to have unique names as they can be identified through the nodes
they connect [2]. For example, the (70009770, 74000091) link connects from
node 70009770 to node 74000091 (8-digit number is the standard form of ID
for X-tee Member IDs/codes).

The maximum number of links is denoted Lmax. For our type of net-
work (directed with loops, but no multiple links in the same direction) the
maximum number of links occurs when each node (N total) is directly con-
nected to every other node (N − 1) and itself (loop, counts as 1 link), thus
Lmax = N × (N − 1 + 1) = N2. A network where L = Lmax is called a
complete network (a clique).

2.3.2 Adjacency matrix of weighted networks

As mentioned in Section 2.2, we will aggregate our data such that there
are no multiple edges in the same direction. This means we will sum all
queries made between the same node pair and turn this sum into the weight
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2.3 Network Science Background2 SUBJECT-SPECIFIC BACKGROUND

attribute of a single link in the given direction. Therefore each link has a
weight that could be notated as wij for a link that connects from i to j.

Adjacency matrix is a way to represent the complete list of the links in
a matrix form. The adjacency matrix of a network of N nodes has N rows
and N columns. Every node connection can be represented by the weight
between the nodes. If a link does not exist, the weight is simply 0. Thus
the matrix can be defined by it’s elements:

Aij = wij for i, j ∈ V

Since we have a directed network, wij could be different from wji and thus
the adjacency matrix Aij is likely to be asymmetric (i.e. ∃ i, j s.t. Aij ̸=
Aji).

2.3.3 Degree, Distributions, Strength

The degree of the ith node in the network is denoted ki and it describes how
many link are connected to this specific node. In directed networks, ki more
precisely describes the node’s total degree, which is actually comprised of
its incoming degree kini and its outgoing degree kouti :

ki = kini + kouti

The node with the highest degree, notated kmax, is the most connected node,
also called a hub.

In a directed network the total number of links, L, can be expressed as
the sum of the node degrees:

L =

N∑
i=1

kini =

N∑
i=1

kouti

Thus we can find the third metric that describes the structure of the
network - the average degree:

⟨kin⟩ = 1

N

N∑
i=1

kini = ⟨kout⟩ = 1

N

N∑
i=1

kouti =
L

N

The average degree can be considered the expected value of the degree
distribution, denoted pk, of the graph:

⟨k⟩ =
∞∑
k=0

kpk
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For a network of N nodes, the degree distribution is the normalized his-
togram given by pk = Nk

N where Nk is the number of nodes with degree
k.

For weighted graphs, instead of summing number of incoming and outgo-
ing nodes, it’s in some cases more informative to sum incoming and outgoing
link weights for each node, which is called the node strength. Similarly as
above, maximum strength, average node strength and strength distribution
are the weighted equivalent of the ”degree” counterparts.

2.3.4 Random Networks, Critical point

Random Network Model is a model where links are placed randomly be-
tween nodes. This aims to reproduce the complexity and messiness of real
networks. In this model, the existence of a link is dependent on a chosen
probability (chance of two nodes being connected). Higher probability re-
sults in more links on the network resulting in higher average node degree
⟨k⟩ and vice versa [7].

Under this model, it’s been observed that there exists a critical point
where one giant component (a large cluster) emerges. This critical point
happens to be ⟨k⟩ = 1. Every network with 0 < ⟨k⟩ < 1 is called subcritical,
1 < ⟨k⟩ < lnN supercritical, and ⟨k⟩ > lnN connected network (every node
is absorbed into the cluster) [15]. Real networks are often supercritical as
they are not always fully connected but tend to have one large cluster, so
this is one condition we will be checking on our data.

2.3.5 Sparseness

Real world networks, which we might expect to have in the X-Road mon-
itoring data, are sparse, meaning there’s a big variation in node degrees.
Sparse graph is broadly defined as a situation where the number of links in
a graph is considerably smaller than the maximum possible number of links:

L ≪ Lmax

Equivalently this means the average in- and out-degrees are considerably
smaller than the total number of nodes:

From Section 2.3.3

⟨kin⟩ = ⟨kout⟩ = L

N
=⇒ L = N × ⟨kin⟩ = N × ⟨kout⟩

and from Section 2.3.1
Lmax = N2
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Thus inequality becomes

N × ⟨kin⟩ = N × ⟨kout⟩ ≪ N2

⟨kin⟩ = ⟨kout⟩ ≪ N

2.3.6 Power Law Degree Distribution

It’s pretty common for the degree distribution of real world networks to
follow the power law distribution. It’s a rich-get-richer type of distribution
that was also the basis of Pareto Principle, that describes a pattern of 20%
of causes resulting in 80% of the effect [11]. The distribution is formulated
by:

pk ∼ k−γ where γ > 0 is a constant

The challenge is to figure out the best way to detect a power law distribu-
tion. For this, we’ll actually plot the logarithm of degree distribution (ln pk)
against the logarithm of network’s degrees (ln k). We should expect to fit a
straight line as seen by formula:

pk ∼ k−γ =⇒ ln pk ∼ −γ ln k

In case of a power law, the observations will result in a downward trending
straight line, with slope −γ. We will see if our data holds up to this common
characteristic of real networks.

2.3.7 Clustering Coefficient

The clustering coefficient captures the degree to which the neighbors of a
given node link to each other, and hence are a common metric for measuring
network’s connectedness.

For a node i with degree ki the local clustering coefficient is defined as

Ci =
2Li

ki(ki − 1)

where Li represents the number of links between the ki neighbors of node i.
Note that Ci is between 0 and 1

• Ci = 0 if none of the neighbors of node i link to each other

• Ci = 1 if the neighbors of node i form a complete graph, i.e. they all
link to each other.
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• Ci is the probability that two neighbors of a node link to each other

The average clustering coefficient ⟨C⟩ expands this idea to the whole graph:

⟨C⟩ = 1

N

N∑
i=1

Ci

Similarly to every nodes clustering coefficient, the average clustering coeffi-
cient will also lie between 0 ≤ ⟨C⟩ ≤ 1. The closer the coefficient is to 1 the
more connected the links are, on average.

Lastly, the global clustering coefficient (CG), equivalently called tran-
sitivity, is an alternative metric to the average clustering coefficient which
prioritises nodes with smaller degrees by observing triplets of nodes. Node
triplets can be with either two links (considered open) or three links (con-
sidered closed). The global clustering coefficient is simply the ratio of closed
triplets over the total number of triplets, both closed and open. Transitivity
can be applied to both undirected and directed networks [9].

2.3.8 Clustering and Communities

Often it’s insightful to also find out whether there are any similar groups
apparent in the network. Clustering means automatically splitting the net-
work into modular structures, also called communities or compartments,
of related members (conventionally understood to be large sub-graphs with
high internal densities). Clustering algorithms can provide a scalable way
to identify functionally important or closely related classes of nodes from
interaction data alone [8].

There are different programmed algorithms to reach an arbitrary num-
ber of clusters. The function I’m using calculates the optimal community
structure for a graph, in terms of maximal modularity score. The general
gist of the modularity score approach is to split the network into a num-
ber of partitions and calculate a score that reflects every partition’s internal
connectivity. The partitions with highest scores will be chosen as designated
communities [3].

There exists also greedy algorithms that have reduced complexity and
hence fit better for use in big networks (N > 100). However as the name
might suggest, greedy algorithms optimise for short-term gain and hence the
result will often not be optimal.
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3 Results

3.1 Understanding the data

After the X-tee data is downloaded from the open data API provided by
the Information System Authority of Estonia, it is turned into a network
object where nodes are the members of X-tee and links are the directed and
weighted data queries between the members.

Both nodes and links have extra attributes as well. Nodes are identified
by their official member codes (for Estonia, it’s usually an 8-digit number).
Besides a human-readable name in Estonian, every member is given a class
and an instance attribute as well, e.g. an Estonian government institution
will be labelled ”GOV” and ”EE” respectively, a Finnish commercial organ-
isations will be labelled ”COM” and ”FI” respectively etc.

Edges have two attributes - weight and ln(weight), where ”weight” really
means the total query volume between two nodes. The logarithmic edge
weight attribute is used mostly for visual purposes as the difference between
the smallest and the largest edge weights is multiple orders of magnitude.
As mentioned in Section 2.2, loops are possible as one member could have
multiple subsystems that query data from each other.

Since the querying activity on X-tee is high volume (millions of trans-
actions per day), for computing purposes, we’ll be observing 1-hour chunks
worth of activity data at a time.

It’s best to start with a visualisation of the network. Since we’re dealing
with around 600 daily active members on the data exchange infrastructure,
it makes sense to visually show only top n most active members. Figure
1 shows 1-hour worth of X-Road activity made by the top 20 most active
members on a sample working day.

12



3.1 Understanding the data 3 RESULTS

Figure 1: Visual representation of 20 most active members on Jan 26, 2022
from 10am-11am EEST displayed with their member names (in Estonian)
and colored by their member class. Red - Government; Blue - Commercial;
Yellow - Non-Government Organisation

We can immediately see how much the data infrastructure is dominated
by the public sector. Also noteworthy is that from the commercial and
NGO members (blue and yellow), 3 out of 4 operate in the healthcare sector.
Hence we can expect the healthcare sector to be a very significant community
on the network.

In Figure 1, each link’s thickness is in proportion to the logarithm of
the number of queries performed. This means that node pairs with thicker
links are more actively querying information between each other, in link’s
direction. However, to better understand the difference in magnitude of
query volume we ought to plot a heat-map:
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Figure 2: A heat-map for the same 20 most active members on Jan 26, 2022
from 10am-11am EEST displayed with their member codes. Horizontal axis
displays outward direction and the vertical axis displays inward direction
activity. Scale: 0.2 < lnwij < 13.7, absence of color tile indicates no link
(wij = 0).

The heat-map in Figure 2 is essentially a visualisation of the adjacency
matrix as defined in Section 2.3.2. Color shows logarithmic query volumes
(logarithmic weight, lnwij). As we can see, it is indeed asymmetric. There’s
only a very few nodes with dark-red tiles meaning a small number of mem-
bers (even among the 20 most active) perform dominant proportion of total
queries which might hint at a power law distribution described in Section
2.3.6. So next we’re going to more rigorously test if the X-tee activity re-
sembles a real world network.

3.2 Real Network Characteristics

As mentioned in Section 2.3.4, it’s common for real world networks to be
supercritical i.e. 1 < ⟨k⟩ < lnN . To find out whether this applies for X-tee
data, we have tabled the changes in the average node degree ⟨k⟩ and the
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natural logarithm of total number of active nodes (members) lnN in Table
1.

Network Date Time N L ⟨k⟩ lnN

X-tee 26 Jan 2022 8am-9am 658 1603 2.44 6.49
X-tee 26 Jan 2022 9am-10am 658 1829 2.78 6.49
X-tee 26 Jan 2022 10am-11am 659 1672 2.54 6.49
X-tee 26 Jan 2022 11am-12pm 656 1654 2.52 6.49
X-tee 26 Jan 2022 12pm-1pm 657 1812 2.76 6.49
X-tee 26 Jan 2022 1pm-2pm 658 1665 2.53 6.49
X-tee 26 Jan 2022 2pm-3pm 659 1694 2.57 6.49
X-tee 26 Jan 2022 3pm-4pm 658 1804 2.74 6.49
X-tee 26 Jan 2022 4pm-5pm 659 1628 2.47 6.49
X-tee 26 Jan 2022 5pm-6pm 658 1512 2.31 6.49
X-tee 26 Jan 2022 6pm-7pm 659 1635 2.48 6.49
X-tee 26 Jan 2022 7pm-8pm 658 1417 2.15 6.49

Table 1: Overview of X-tee with key structure metrics on Jan 26, 2022 from
8AM-8PM EEST

In our case 1 < ⟨k⟩ < lnN throughout the day meaning our graph is
in supercritical, meaning the network shows one large dominating cluster
(giant component). This gives us confidence that our network has the char-
acteristics common to real world networks.

The network is also sparse throughout the day because Lmax = N2 ≈
430 000 so L ≪ Lmax, as defined in Section 2.3.5.

Having currently passed all checks for common characteristic of real net-
works, we can next take a look at the degree distribution and see whether
it follows a power law pk ∼ k−γ , as proposed in Section 2.3.6. If indeed
we have a real world network then we should be able to fit a straight line
onto a plot of ln pk against ln k. The fitted line should have a slope of −γ.
Since we’re dealing with a directed graph, we have to observe the in-degree
distribution separate to the out-degree distribution.
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Figure 3: Log Distribution against Log of Incoming Degrees fitted with a
straight line of slope −γin = −1.95

Figure 4: Log Distribution against Log of Outgoing Degrees fitted with a
straight line of slope −γout = −1.49

16
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Both plots are based on the 10am-11am data shown in Table 1. For
the incoming degrees, the distribution doesn’t seem to fit a line. It could
potentially be considered a transition between two lines, a steep one for
small ⟨k⟩ (ln⟨k⟩ < 2) and a shallow one for larger ⟨k⟩ (ln⟨k⟩ > 2). For out-
degrees in Figure 4, the data reasonably fits a straight line, meaning that at
least the out-degrees do seem to follow a power law with constant γ = 1.49.

Overall, similar patterns of degrees, sparseness, and distributions hold
for other analysed days as well. Hence these metrics can give reasonable
insights to the X-Road activity, which seem to share many of the commonly
occurring patterns of real world networks.

For X-tee specifically, we found out that typically there’s just under
660 members active on the network at each hour throughout the day. Each
member, on average, is receiving data queries from 2-3 members and sending
data queries to 2-3 members. And the receiving and requesting members
are likely not the same as hinted with the asymmetric adjacency matrix in
Section 3.1.

3.3 Hubs

As briefly introduced in Section 2.3.3, hubs are nodes with the highest degree
in a network. Since the X-Road network is directed we can observe the hubs
(in other words the most connected members) by finding the node with
largest in- and out-degrees. As an example in Table 2, we can see that the
in-degree hub changes throughout the day.

Hub status in Table 2 mostly fluctuates between Ministry of Internal
Affairs IT- and Development Center, which provides IT solutions for a lot
of different internal activities from Police e-services to passport- and ID
verifications [12], the Tax and Customs Board, and during the daytime
Estonia’s national Health Insurance Fund.
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3.3 Hubs 3 RESULTS

Time kinmax Hub Member Name (EN)

12am-1am 82 Ministry of Internal Affairs IT- and
Development Center

1am-2am 71 Ministry of Internal Affairs IT- and
Development Center

3am-4am 64 Estonian Tax and Customs Board
4am-5am 78 Ministry of Internal Affairs IT- and

Development Center
5am-6am 58 Ministry of Internal Affairs IT- and

Development Center
6am-7am 60 Estonian Tax and Customs Board
7am-8am 72 Ministry of Internal Affairs IT- and

Development Center
8am-9am 75 Ministry of Internal Affairs IT- and

Development Center
8am-9am 123 Estonian Health Insurance Fund
9am-10am 127 Estonian Health Insurance Fund
10am-11am 125 Estonian Health Insurance Fund
11am-12pm 121 Estonian Health Insurance Fund
12pm-1pm 117 Estonian Health Insurance Fund
1pm-2pm 119 Estonian Health Insurance Fund
2pm-3pm 125 Estonian Health Insurance Fund
3pm-4pm 115 Estonian Health Insurance Fund
4pm-5pm 110 Estonian Health Insurance Fund
5pm-6pm 87 Ministry of Internal Affairs IT- and

Development Center
6pm-7pm 94 Ministry of Internal Affairs IT- and

Development Center
7pm-8pm 80 Ministry of Internal Affairs IT- and

Development Center
8pm-9pm 81 Ministry of Internal Affairs IT- and

Development Center
9pm-10pm 83 Ministry of Internal Affairs IT- and

Development Center
10pm-11pm 71 Estonian Tax and Customs Board
11pm-12am 73 Estonian Tax and Customs Board

Table 2: X-tee hubs throughout Jan 26, 2022 by largest incoming-degree
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When observing the out-degree hubs then throughout the day the Esto-
nian Information Systems Authority (ISA) is the biggest hub. It’s likely that
the ISA is launching automated queries to test other member’s IT systems
as the ISA is responsible for the up-keeping of X-tee [4].

Similarly, we can find nodes with the highest node strength. This will
show nodes with the highest in- and outward query volume, the weighted
equivalent of hubs. We find that volume-wise, and throughout the day,
the Tax and Customs Board (TCB) is the member with highest volume of
incoming queries with a total amount of around 10 million per day. Biggest
out-going node strength, in other words the node who does the most data
querying is the Estonian Chamber of Bailiffs and Trustees in Bankruptcy
(ECBTB) with also just below 10 million data queries sent per day. And the
data activity between the TCB and ECBTB seem to overlap to some extent
from looking at the thick link from ”Kohtutäiturite ja Pankrotihaldurite
Koda” (ECTBTB) to ”Maksu- ja Tolliamet” (TCB) on Figure 1.

3.4 Average and Global Clustering coefficients

Figure 5: Average and Global Clustering coefficients on a dual y-axis de-
picted throughout Jan 26, 2022, x-axis shows hours since midnight

The clustering coefficient introduced in Section 2.3.7 shows how diversely
the nodes in the network are connected. The average clustering coefficient
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stays stable around 0.9, meaning that on average every member’s neighbor is
locally very well connected. Global clustering coefficient is a connectedness
metric where more emphasis is put on so-called closed connections hence
the small coefficient hints at a lot of one-way querying and centralised data
sources.

These results show that smaller members query data from well con-
nected, higher degree, members. This makes sense, to the extent that a lot of
relatively small private commercial organisations depend on well connected
government institutions for data flow. But many government organisations,
with the exception of ISA, don’t have a lot of reason to queries the smaller
degree members.

3.5 Communities

Lastly, I’m going to observe communities. As introduced in Section 2.3.8,
community clustering algorithms use elaborate methods to decide on optimal
partitioning of the network in order to outline important and closely related
groups of members (nodes).

Since clustering algorithms are computationally heavy, I ran clustering
only for the top 50 most active members of the infrastructure for each 1-hour
slot. An example of which can be see in Figure 6.
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Figure 6: 50 most active members grouped into 5 optimal communities, Jan
26, 2022, 10am-11am data, each node is sized in proportion to it’s strength,
legend identified by hand

As predicted in Section 3.1, healthcare and medical sector do play a sig-
nificant role next to many government-led communities. In healthcare, the
communication is more concentrated internally, followed by communications
with the Social Security and Taxes community. This connection shows the
function of free/insured public healthcare for citizens as medical institutions
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are in a constant need to query social information such as employment and
tax data.

Throughout the day, the Internal Affairs and Transport sector seem to
be the community that communicates with the outside the most. Under this
community we have organisations who provide digital services of national
importance, such as live data for emergency services, passport and ID-card
verifications, and radio and communications. In fact, the Estonian Police
is the second strongest node in this community, second to the Ministry of
Internal Affairs IT- and Development Center.

Figure 7: Interactions between the 5 optimal communities leads to a com-
plete graph. Further analysis could make link thickness proportional to
query volume.

Overall, it’s a very promising result that clustering algorithms grouped
similar organisations into the same communities impressively accurately.
This shows that there is indeed enough information for network analysis
methods to imply the sector of an organisation based on simply their trans-
actional activity data without the core data itself. So this is a topic that
should definitely be expanded further.
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4 Conclusions and Outlook

4.1 Conclusions

Over the course of the project, I analysed over 30 million data queries made
on the Estonian instance of X-Road, the national data exchange infrastruc-
ture in Estonia. We reached many interesting conclusions thanks to Network
Science analysis methods.

When approaching the data from a network perspective we found that
X-tee network shares many attributes with other real world networks. It’s
a rather sparse network, with a giant component, and parts of the network
follow a power law distribution. It’s overall not very connected (L ≈ 1670 ≪
Lmax ≈ 430 000), a lot of nodes do one-way queries (global cluster coefficient
CG ≈ 0.03), but it’s nodes in general are well connected (average cluster
coefficient ⟨C⟩ ≈ 0.89). Assuming other X-Road networks follow similar
patterns, this would lay a good foundation for further modelling of such
networks. For example, some prediction models assume the underlying data
follows a power law distribution [14], and we’ve shown that the outgoing
degree distribution of the X-tee network follows indeed that.

We deduced that the public sector is the backbone of our data exchange
infrastructure because the network’s biggest members, both in connected-
ness and volume, are governmental organisations. Most diverse querying at
night was made by the Tax and Customs authorities and IT services, and
during daytime it was the healthcare-related services that had the biggest ap-
petite for data. In terms of query volume, the Tax and Customs authority’s
services are queried the most. The biggest volume of queries sent/requested
is from the Estonian Chamber of Bailiffs and Trustees in Bankruptcy, also
contributing for a big portion of the Tax and Customs Board’s incoming
queries. It’s seems evening and nighttime is a prime time for mass data
queries from government organisations on people and companies given the
activity of Tax Authority and Bankruptcy Bailiffs mentioned previously.
Similarly during daytime, it’s the service sector that flourished, most notably
healthcare, from the Health Insurance Fund to actual hospitals showing up
in the top 20 most active X-tee members.

Remarkably, we found that modelling X-tee transaction data as a net-
work enabled us to group members into communities fairly accurately. Most
clustering attempts resulted in 5 communities: Healthcare, IT and Infras-
tructure, Social Security and Taxes, Internal Affairs and Transport, and
lastly Education, Defense, Environment. This shows a potential of further
insight on the data transaction flows between communities.
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With this, I’ve achieved my research objective to gather more insight on
the dynamic X-tee network from Network Science perspective. I represented
the activity data as a network, fitted potential models for its distribution,
gave metrics on connectedness, outlined most active members, and clustered
5 distinct (and realistic) communities. The aim for the results was to add
value to the already existing infrastructure insights [6] which we did by new
visualisations and metrics that could be applied to real-time data.

4.2 Outlook

This project has lots of opportunity for expansion. I’ve just scratched the
tip and there’s more to do from all perspectives – in connectedness metrics,
distribution modelling, and analysis of the data flows.

Connectedness could be explored with concepts like reciprocity, between-
ness and other similar metrics. Distribution models could be expanded as
brought up in Section 3.2, for example fitting the in-degree distribution
with two linear lines instead of one. And analysis of the data flow could be
expanded in multiple ways. Firstly, the flow changes between the defined
communities over time could quantify a standard data transaction proce-
dures we should expect on such data infrastructures. And secondly, the
original data has query packet sizes that could be taken account into query
volume to clear the model. E.g. in this project I assumed 2 queries to be
higher volume than 1 query, but what if the 1 query is the size 100KB and
the 2 queries in total make 50KB – then the volume of 2 queries is actually
smaller than the volume of 1 query and the inference on network structure
and dynamics could differ.

Another interesting direction to take is to consider the fact that only
3% of requests on X-tee are submitted by citizens [6], everything else is
automated. When queries could be distinguished into types (single vs. au-
tomated) and analysed the behavior of these types, then new insights mech-
anisms on actual citizen impact on the network could be built.

Lastly, the ultimate goal for this project would be to have a live overview
of X-tee based on (near) real-time data to draw conclusions on behaviour-
and follow metrics live. This could have the potential to spot anomalies
independent from the infrastructure members and overall help improve the
decision making and monitoring of any X-Road (or similar) system.
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